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Abstract. We find the Laughlin states of the electrons on the Pointalf-plane in different
representations. In each case we show that a quantum grQup) symmetry exists such that

the Laughlin states are a representation of it. We calculate the corresponding filling factor by
using the plasma analogy of the fractional quantum Hall effect.

1. Introduction

Studying the behaviour of charged particles on the two-dimensional surface in the presence
of a strong magnetic field has led to the discovery of the fractional quantum Hall effect
(FQHE) [1,2]. To explain this phenomenon, Laughlin proposed a suitAbfgarticle
wavefunction which describes the FQHE of the filling factor= 1/m, wherem is an

odd integer [3]. Laughlin’'s model also has a beautiful analogy with an incompressible fluid
of interacting plasma.

Later, the quantum mechanics of the non-relativistic particles in a uniform magnetic
field were studied for different two-dimensional surfaces. The first was the sphere on which
the magnetic field was produced by a magnetic monopole [4], and recently the topological
torus [5] and arbitrary two-dimensional compact Riemann surfaces were studied [6].

One of the important point in the physics of the FQHE is to understand the
incompressibility feature of this problem in the language of the symmetries of this theory.
In [7], it is shown that this feature relates to the existence of the Fairlie—Fletcher—Zachos
(FFZ) algebra [8] as a symmetry algebra of the Hamiltonian. As this algebra reduces to
the area-preserving diffeomorphism it can explain the incompressibility. It was also shown
that the generators of the FFZ algebra, which are the magnetic translation operators, could
represent theu,(2) algebra wherey is a function of the magnetic field [5, 7, 9].

The case of non-compact surfaces, and especially the upper half-plane with Poincar
metric was also studied in several papers [10-12]. In these articles the one-particle
wavefunctions and the symmetries of the Hamiltonian were discussed. In [13] we began our
investigation ofsu,(2) symmetry for this surface by finding the generators of this quantum
algebra and showing that the one-particle ground state is a representation sof, ({5

In this paper we are going to complete our study of the FQHE on the Péihedfrplane
by calculating the Laughlin states. We will find different representations of this state. To
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clarify what we mean by this we remind the reader that in the original work of Laughlin
the ground states were the eigenstates of the angular momentum. But in our case the
angular momentum is not the symmetry of the Hamiltonian, nevertheless there are three
operators which commute with the Hamiltonian and generateSth€, R) algebra. By
different Laughlin states we mean that we will find the Laughlin wavefunctions which are
simultaneous eigenfunctions of Hamiltonian and different symmetry operators. In all cases
we will show that the Laughlin states form a representatiosug{2).

We will also discuss the filling factor. The calculation of the filling factor (which is
defined as the ratio of the total number of the electrons to the degeneracy of the first Landau
level) is not clear in the non-compact surface, because the degeneracy and also the total
area are both infinite in this case; therefore, we must calculate it in a different way. As will
be seen, we will compute by using the plasma analogy.

In section 2 we will write the Laughlin states in such a way that they will be the
eigenstates of the operataf$ 'L, which were used in [12]. In section 3 another symmetry
operator will be used (the operat8s which generates dilation) and the single-particle and
also the Laughlin wavefunctions will be found. By calculating the effective interaction
potential, we will find the corresponding filling factor of these states. The generators of the
guantum-group symmetry witlB-dependent; will also be found. The degeneracy of the
first Landau level which will be considered in sections 2 and 3 is infinite and the states are
labelled by a continuous parameter. For completeness of our study, we will consider the
discrete degenerate states in section 4.

2. Laughlin states as eigenstates of; £,

Consider the upper half-plarfe = x + iy, y > 0} with the metric

dx? + dy?
2 _ # 1)
y
For a covariently constant magnetic fighdand in the symmetric gaugé, = A: = B/2y,

the one-particle Hamiltonian is [11, 13]

ds

- iB -
H=—y%33 + S Y@+ + B?/4. )
(We take the electron mags = 2.) The symmetry operators of this Hamiltonian are
Li=0,=09+40 )
Ly =x0, +yd, =20 +20
L= (y> = x»0, — 2xydy — 2iBy. (©)

The operatorL; generates th&L(2, R) algebra. The ground states with enerBy4 are
[13]
Yo(z,2) =y’ f(2) (4)

where f(z) is an arbitrary holomorphic function. In [13] it was shown that if we demand
that ¥o(z, z7) be an eigenfunction of = Lzle with eigenvalue), it takes the form

YoMz, 2) =yP(h —2)7". (5)
If we defineT; = exp(é1c + &20), wherec = L4, then it was shown that the operators
I - T, T¢—T, 2
Jy= =" "1 g% =T, (6)
T g—qt q—q! e

1 By solving the eigenvalue problemIlen// =AY we mean solving the equatiqil; — AL1)y = 0.
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satisfy thesu,(2) algebra [14]
1
[Jo, J&] = £Jx [y, J-]= m(qzjo - 6]7210) (7)

and yo(r|z,7) is a representation of this algebra. In equation €6)= (&1, &) and
n = (61, —52).

Now to construct theV-particle wavefunction we assume the magnetic field to be so
strong that we can approximately neglect the electron—electron interactions. In this case the
Laughlin wavefunction takes the form

N
Y (2i, 2i) = H(Zj —z)" f(z1, ..., 2ZN). (8)
Jj<k
We will take f(z;, z;) to be totally symmetric under the interchange~ z; so that, withm
an odd positive integery,, will be totally antisymmetric.f (z;, z;) must be found such that
., will be the ground-state wavefunction of the non-interacting Hamiltodias >~ | H;,
where H; is defined as in equation (2), with energyB /4. In this way it can be seen that

fzi,zi) is
N - —
f(zla DRI ZN) = l—[ yiBw(Zlv P ZN)@1Z1+"'+)‘NZII (9)
i=1

with vazl A; = 0. The condition of symmetrization of (z;, z;), forces us to take all; as
equal and thereforg; = 0, andy(z1, ..., zy) as equal tcﬂfv:l Yo(z;). SO

N N
Vi 2 = [ [ @ — 20" [ | v oz (10)
i=1

j<k

Now we will determineyo(z;) such thaty,, will be an eigenfunction ofﬁ;lﬁg with
eigenvaluer. £; and L, are

N N
Ly=) @Gi+0)  Lo=) (ud+%d) (11)
i=1 i=1
By using the following relations

N
ﬁl H(Zj - Zk)m =0

Jj<k

N N(N -1 {4 42
m m - m
L H(Zj —z)" = — H(z(,‘ — )
Jj<k Jj<k
and by using the condition of symmetrization¥fzy, ..., zy), we obtain
N N
YO 2 2) = [ [ — 20" [ 9f O =z B -072, (13)
Jj<k i=1

It can be seen that faN = 1, v, reduces to equation (5). Also it can be checked that the
above states form an infinite-dimensional representationof2) algebra

J:l:wm ()h Zis Zz) = [1/2 + )‘/sl]qwm ()L + Ela Zis Zz)

_ _ (14)
qijol//m A, zi,Zi) = q]F)‘/Ell//m (A, 25 Zi)
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where ], is defined by ], = (¢* — ¢™) /(¢ — ¢~ and J5. and J, are defined in the
same way as equation (6), withy = exp(§1L1 + Sgﬁglﬁg).

For better understanding of the physics behind the Laughlin states, we will find another
representation of the Laughlin states which are more suitable.

3. Laughlin wavefunction as eigenstates of,

Let us first consider the one-particle wavefunction. If we demand that the state (4) be an
eigenstate of the operatdr, with eigenvaluen, it can easily be found that

Im) = Ym(z,2) = yP" P (15)
These states form a representation of the quantum gsay(@). This can be seen as
follows. DefineE* andk as
Et=—z[Lyta+pl, E =z [La+a—fl, k=qg"" (16)
Then we can verify that

2 -2
—k
[EY E7]lm) =~ |m) kKE*k™Y|m) = g E*|m). (17)
q9—9°
For the N-particle state we can see that, under the same assumptions as in the last
section, the following wavefunction

N N
Uz 20 = [P [ @ —20"" (18)
i=1 i<j

is
(i) an eigenstate off = ) H; with eigenvalueN B/4;

(ii) an eigenstate of
L

2+

NB(N —3)
)

B 2
 N(N-1)
with eigenvaluen,
(i) totally antisymmetric.
The generators ofu,(2) are now

N N
Ef=-[la -t +a+pl,  E =[Ja-L+a—pl, (19)

i<j i<j
k = g~te.
To ensure the Fermi—Dirac statistics for the wavefunction (@8); B must be 1, 3, 5.. ..
Since E~ is a lowering operator, and reducesby 1, there should exist a lowest state

| min)

E™ |mmin) = 0. (20)
This condition can determine the deformation parametas (by choosing: = )
i
= . 21
0 =exp( ;") @)

This equation relateg to the magnetic field as in the cases of the plane [7], sphere [9] and
torus [5].
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To calculate the filling factor that corresponds to the Laughlin state (18), we proceed
to the same method that was followed by Laughlin [3], that is we introduce the effective
classical potential energy in |v,,|> = e #?. If we set the arbitrary effective temperature
1/8 equal tom — B, we find

N
¢p=—m—BPY Injg; — ;> —(m—B) > Iny?’. (22)
i<j i
The first term is the natural coulomb interaction of the particles with chargeB. This
is because the solution of the Laplace equation in the Pdrualf-plane is logarithmic. If
one calculates the Laplace—Beltrami operator for the metric (1), one finds

1 .
V2 = —08:/g8" 0,0 = y?(32 + 82)¢p. 23
i V8809 =y s (23)
Then
VZInzz = A(r) = y?5(0)5(y) (24)
where A(r) is the delta function on the Poin&half-plane
fA(r)@dx dy =1. (25)

The second term of equation (22) is the interaction of these particles with the uniform
neutralizing background of charge density= —B/2r

VZ(—Iny?t) = —4x (_B> ) (26)
21

But the plasma must be electrically neutral everywhere, so the total charge of these particles
must be equal to the background charge, and this leads to the charge density
N o

Pm= A" m—B
where N is the total number of the charged particles ahds total area. Therefore the
filling factor v = p,,/po is equal to

1

" m-—B’
So the wavefunction (18) corresponds to the filling factes 1/M whereM = m — B is
a positive odd integer.

(27)

v (28)

4. Discrete representation

To complete our study of the FQHE on the Poirichalf-plane, we are going to discuss the
Laughlin state as a discrete representation ofsthnd, 1) algebra. As discussed in [11], if
we define

Jo=—3i(L1— Lg) J1=—3i(L1+ Lg) Jo=—iL, (29)
then it can be seen that they satisfy th&1, 1) algebra:
[Jo, Jil =2 [Jo, Jo] = —iJ1 [J1, Jo] = —iJO (30)

and the Hamiltonian (2) becomes the Casin@ir= JZ — J? — J? = —4H + B2. This
algebra has two kinds of representation, the discrete and continuous. These representations
are labelled by the eigenvalues of the Casimir operator and the compact oplgrator

Clj.n)=JjG +Dlj.n) Jolj,n) =nlj,n) (n'ljn) = 8uw (31)
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The unitary irreducible representation of the discrete series is divided into two kinds
D_;r or D, depending on the values ¢f for j > 0

D,-+={|j,j+1>,|j,j+2),m} (32)
with J_|j, j+ 1) =0, and forj <0
D ={lj, )i, ji—1,...} (33)

with J,|j, j) = 0. J1 are as usuay; £ iJs.
Now if we choose the eigenstates of the Hamiltonian to be in the discrete serieg, then

takes the values-B +n wheren = 0, 1, 2, .... The ground states correspond jte= —B
and, therefore, we are in th@;” series. We have infinite discrete degenerate ground states
|- B,—B),|—B,—B—-1),.... (34)

To find these states explicitly, we choose the ground state (4) to be the eigenstdges of
with eigenvaluez. By some calculation, we find

(39)

The quantum-group generators are the same as those in equation (16), by replacing
equation (16) with(z —i)/(z + i) and L, with Jo. Also, as our states are those in equation
(34), sonmax = —B and thereforeE ™ |nma = 0 which givesg (by choosingy = 8 = —%
as

q= exp(szri 1) . (36)

By the same reasoning, thé-particle wavefunction ig,, (z;, z;) in equation (10), where
we determineyo(z;) such that they,, (z;, z;) will be the eigenfunction off =}, Jé’ with
eigenvalueM. A lengthy calculation shows that

p N N R (Zj o i)M/N—B—m(N—l)/Z

>y — o m
Vi (2> 20) = H(Z/ 2k) Hyj (zj + HM/N+B+m(N-1)/2 (37)
j=1 ;

Jj<k

with m = 2k + 1. Finally the suitableu,(2) generators are

N I\ IYN N A 72\
E+=—H<Z’ ') [J +a+ Bl E‘=H<Z’ ') J+a—pl, (39

jo1 \%j +1 =1 \Zj +1

k=gq

5. Conclusion

As mentioned in the introduction, one way to describe the behaviour of the electron in the
FQHE is the concept of incompressible fluid, and its presence can be seen by checking the
existance of the quantum group symmetry of the Laughlin states. In this paper we showed
that in all cases there are such symmetriand therefore we believe that this indicates
that the collective motion of the electrons in FQHE on the Poindalf-plane are also
incompressible.

The last point is that it can be easily shown that the operator

L = gi(z)L1+ g2(z) L2 + g3(z) L3 + ga(z) (39)

1 The generators of the:, (2) algebra in section 2 commute with the Hamiltonian, and these generators in sections
3 and 4 commute wittH at the level of the ground states (see equation (40)).
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with arbitrary holomorphic functiong; (z)s, commutes with the Hamiltonian at the level of
the ground state

[H, L]Yo(z,2) = 0. (40)

It can be shown that one can write theparticle wavefunction to be the eigenstatelqf

and with suitable choosing ¢f; (z), these functions can be made normal. The importance
of this point will appear when we consider that the wavefunctions of the previous sections
are not normal.
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