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Abstract. We find the Laughlin states of the electrons on the Poincaré half-plane in different
representations. In each case we show that a quantum groupsuq(2) symmetry exists such that
the Laughlin states are a representation of it. We calculate the corresponding filling factor by
using the plasma analogy of the fractional quantum Hall effect.

1. Introduction

Studying the behaviour of charged particles on the two-dimensional surface in the presence
of a strong magnetic field has led to the discovery of the fractional quantum Hall effect
(FQHE) [1, 2]. To explain this phenomenon, Laughlin proposed a suitableN -particle
wavefunction which describes the FQHE of the filling factorν = 1/m, wherem is an
odd integer [3]. Laughlin’s model also has a beautiful analogy with an incompressible fluid
of interacting plasma.

Later, the quantum mechanics of the non-relativistic particles in a uniform magnetic
field were studied for different two-dimensional surfaces. The first was the sphere on which
the magnetic field was produced by a magnetic monopole [4], and recently the topological
torus [5] and arbitrary two-dimensional compact Riemann surfaces were studied [6].

One of the important point in the physics of the FQHE is to understand the
incompressibility feature of this problem in the language of the symmetries of this theory.
In [7], it is shown that this feature relates to the existence of the Fairlie–Fletcher–Zachos
(FFZ) algebra [8] as a symmetry algebra of the Hamiltonian. As this algebra reduces to
the area-preserving diffeomorphism it can explain the incompressibility. It was also shown
that the generators of the FFZ algebra, which are the magnetic translation operators, could
represent thesuq(2) algebra whereq is a function of the magnetic field [5, 7, 9].

The case of non-compact surfaces, and especially the upper half-plane with Poincaré
metric was also studied in several papers [10–12]. In these articles the one-particle
wavefunctions and the symmetries of the Hamiltonian were discussed. In [13] we began our
investigation ofsuq(2) symmetry for this surface by finding the generators of this quantum
algebra and showing that the one-particle ground state is a representation of thissuq(2).

In this paper we are going to complete our study of the FQHE on the Poincaré half-plane
by calculating the Laughlin states. We will find different representations of this state. To
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clarify what we mean by this we remind the reader that in the original work of Laughlin
the ground states were the eigenstates of the angular momentum. But in our case the
angular momentum is not the symmetry of the Hamiltonian, nevertheless there are three
operators which commute with the Hamiltonian and generate theSL(2, R) algebra. By
different Laughlin states we mean that we will find the Laughlin wavefunctions which are
simultaneous eigenfunctions of Hamiltonian and different symmetry operators. In all cases
we will show that the Laughlin states form a representation ofsuq(2).

We will also discuss the filling factor. The calculation of the filling factor (which is
defined as the ratio of the total number of the electrons to the degeneracy of the first Landau
level) is not clear in the non-compact surface, because the degeneracy and also the total
area are both infinite in this case; therefore, we must calculate it in a different way. As will
be seen, we will computeν by using the plasma analogy.

In section 2 we will write the Laughlin states in such a way that they will be the
eigenstates of the operatorsL−1

1 L2 which were used in [12]. In section 3 another symmetry
operator will be used (the operatorL2 which generates dilation) and the single-particle and
also the Laughlin wavefunctions will be found. By calculating the effective interaction
potential, we will find the corresponding filling factor of these states. The generators of the
quantum-group symmetry withB-dependentq will also be found. The degeneracy of the
first Landau level which will be considered in sections 2 and 3 is infinite and the states are
labelled by a continuous parameter. For completeness of our study, we will consider the
discrete degenerate states in section 4.

2. Laughlin states as eigenstates ofL−1
1 L2

Consider the upper half-plane{z = x + iy, y > 0} with the metric

ds2 = dx2 + dy2

y2
. (1)

For a covariently constant magnetic fieldB and in the symmetric gaugeAz = Az̄ = B/2y,
the one-particle Hamiltonian is [11, 13]

H = −y2∂∂̄ + iB

2
y(∂ + ∂̄)+ B2/4. (2)

(We take the electron massm = 2.) The symmetry operators of this Hamiltonian are

L1 = ∂x = ∂ + ∂̄

L2 = x∂x + y∂y = z∂ + z̄∂̄

L3 = (y2 − x2)∂x − 2xy∂y − 2iBy. (3)

The operatorLi generates theSL(2, R) algebra. The ground states with energyB/4 are
[13]

ψ0(z, z̄) = yBf (z) (4)

wheref (z) is an arbitrary holomorphic function. In [13] it was shown that if we demand
thatψ0(z, z̄) be an eigenfunction ofb = L−1

1 L2 with eigenvalueλ†, it takes the form

ψ0(λ|z, z̄) = yB(λ− z)−B. (5)

If we defineTξ = exp(ξ1c + ξ2b), wherec = L1, then it was shown that the operators

J+ = Tξ − Tη

q − q−1
J− = T−ξ − T−η

q − q−1
q2J0 = Tξ−η (6)

† By solving the eigenvalue problemL−1
1 L2ψ = λψ we mean solving the equation(L2 − λL1)ψ = 0.
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satisfy thesuq(2) algebra [14]

[J0, J±] = ±J± [J+, J−] = 1

q − q−1
(q2J0 − q−2J0) (7)

and ψ0(λ|z, z̄) is a representation of this algebra. In equation (6)ξ = (ξ1, ξ2) and
η = (ξ1,−ξ2).

Now to construct theN -particle wavefunction we assume the magnetic field to be so
strong that we can approximately neglect the electron–electron interactions. In this case the
Laughlin wavefunction takes the form

ψm(zi, z̄i) =
N∏
j<k

(zj − zk)
mf (z1, . . . , z̄N). (8)

We will takef (zi, z̄i) to be totally symmetric under the interchangezi ↔ zj so that, withm
an odd positive integer,ψm will be totally antisymmetric.f (zi, z̄i) must be found such that
ψm will be the ground-state wavefunction of the non-interacting HamiltonianH = ∑N

i=1Hi ,
whereHi is defined as in equation (2), with energyNB/4. In this way it can be seen that
f (zi, z̄i) is

f (z1, . . . , z̄N) =
N∏
i=1

yBi ψ(z1, . . . , zN)e
λ1z̄1+···+λN z̄n (9)

with
∑N

i=1 λi = 0. The condition of symmetrization off (zi, z̄i), forces us to take allλi as
equal and thereforeλi = 0, andψ(z1, . . . , zN) as equal to

∏N
i=1ψ0(zi). So

ψm(zi, z̄i) =
N∏
j<k

(zj − zk)
m

N∏
i=1

yBi ψ0(zi). (10)

Now we will determineψ0(zi) such thatψm will be an eigenfunction ofL−1
1 L2 with

eigenvalueλ. L1 andL2 are

L1 =
N∑
i=1

(∂i + ∂̄i ) L2 =
N∑
i=1

(zi∂i + z̄i∂̄i ). (11)

By using the following relations

L1

N∏
j<k

(zj − zk)
m = 0

L2

N∏
j<k

(zj − zk)
m = mN(N − 1)

2

N∏
j<k

(zj − zk)
m

(12)

and by using the condition of symmetrization ofψ(z1, . . . , zN), we obtain

ψm(λ, zi, z̄i) =
N∏
j<k

(zj − zk)
m

N∏
i=1

yBi (λ− zi)
−B−m(N−1)/2. (13)

It can be seen that forN = 1, ψm reduces to equation (5). Also it can be checked that the
above states form an infinite-dimensional representation ofsuq(2) algebra

J±ψm(λ, zi, z̄i) = [1/2 ∓ λ/ξ1]qψm(λ∓ ξ1, zi, z̄i)

q±J0ψm(λ, zi, z̄i) = q∓λ/ξ1ψm(λ, zi, z̄i)
(14)
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where [x]q is defined by [x]q = (qx − q−x)/(q − q−1) and J± and J0 are defined in the
same way as equation (6), withTξ̄ = exp(ξ1L1 + ξ2L−1

1 L2).
For better understanding of the physics behind the Laughlin states, we will find another

representation of the Laughlin states which are more suitable.

3. Laughlin wavefunction as eigenstates ofL2

Let us first consider the one-particle wavefunction. If we demand that the state (4) be an
eigenstate of the operatorL2 with eigenvaluem, it can easily be found that

|m〉 = ψm(z, z̄) = yBzm−B. (15)

These states form a representation of the quantum groupsuq(2). This can be seen as
follows. DefineE± andk as

E+ = −z[L2 + α + β]q E− = z−1[L2 + α − β]q k = qL2+α. (16)

Then we can verify that

[E+, E−]|m〉 = k2 − k−2

q − q−1
|m〉 kE±k−1|m〉 = q±E±|m〉. (17)

For theN -particle state we can see that, under the same assumptions as in the last
section, the following wavefunction

ψm(zi, z̄i) =
N∏
i=1

yBi

N∏
i<j

(zi − zj )
m−B (18)

is
(i) an eigenstate ofH = ∑

Hi with eigenvalueNB/4;
(ii) an eigenstate of

L = 2

N(N − 1)

(
L2 + NB(N − 3)

2

)
with eigenvaluem,

(iii) totally antisymmetric.
The generators ofsuq(2) are now

E+ = −
N∏
i<j

(zi − zj )[L + α + β]q E− =
N∏
i<j

(zi − zj )
−1[L + α − β]q (19)

k = qL+α.

To ensure the Fermi–Dirac statistics for the wavefunction (18),m−B must be 1, 3, 5, . . ..
SinceE− is a lowering operator, and reducesm by 1, there should exist a lowest state
|mmin〉

E−|mmin〉 = 0. (20)

This condition can determine the deformation parameterq as (by choosinga = β)

q = exp

(
π i

B + 1

)
. (21)

This equation relatesq to the magnetic field as in the cases of the plane [7], sphere [9] and
torus [5].
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To calculate the filling factor that corresponds to the Laughlin state (18), we proceed
to the same method that was followed by Laughlin [3], that is we introduce the effective
classical potential energyφ in |ψm|2 = e−βφ . If we set the arbitrary effective temperature
1/β equal tom− B, we find

φ = −(m− B)2
N∑
i<j

ln |zi − zj |2 − (m− B)
∑
i

ln y2B
i . (22)

The first term is the natural coulomb interaction of the particles with chargem − B. This
is because the solution of the Laplace equation in the Poincaré half-plane is logarithmic. If
one calculates the Laplace–Beltrami operator for the metric (1), one finds

∇2φ = 1√
g
∂i

√
ggij ∂jφ = y2(∂2

x + ∂2
y )φ. (23)

Then

∇2 ln zz̄ = 1(r) = y2δ(x)δ(y) (24)

where1(r) is the delta function on the Poincaré half-plane∫
1(r)

√
g dx dy = 1. (25)

The second term of equation (22) is the interaction of these particles with the uniform
neutralizing background of charge densityρ0 = −B/2π

∇2(− ln y2B) = −4π

(−B
2π

)
. (26)

But the plasma must be electrically neutral everywhere, so the total charge of these particles
must be equal to the background charge, and this leads to the charge density

ρm = N

A
= ρ0

m− B
(27)

whereN is the total number of the charged particles andA is total area. Therefore the
filling factor ν = ρm/ρ0 is equal to

ν = 1

m− B
. (28)

So the wavefunction (18) corresponds to the filling factorν = 1/M whereM = m− B is
a positive odd integer.

4. Discrete representation

To complete our study of the FQHE on the Poincaré half-plane, we are going to discuss the
Laughlin state as a discrete representation of thesu(1, 1) algebra. As discussed in [11], if
we define

J0 = − 1
2i(L1 − L3) J1 = − 1

2i(L1 + L3) J2 = −iL2 (29)

then it can be seen that they satisfy thesu(1, 1) algebra:

[J0, J1] = iJ2 [J0, J2] = −iJ1 [J1, J2] = −iJ0 (30)

and the Hamiltonian (2) becomes the Casimir,C = J 2
0 − J 2

1 − J 2
2 = −4H + B2. This

algebra has two kinds of representation, the discrete and continuous. These representations
are labelled by the eigenvalues of the Casimir operator and the compact operatorJ0

C|j, n〉 = j (j + 1)|j, n〉 J0|j, n〉 = n|j, n〉 〈jn′|jn〉 = δnn′ (31)
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The unitary irreducible representation of the discrete series is divided into two kinds
D+
j or D−

j , depending on the values ofj , for j > 0

D+
j = {|j, j + 1〉, |j, j + 2〉, . . .} (32)

with J−|j, j + 1〉 = 0, and forj < 0

D−
j = {|j, j〉, |j, j − 1〉, . . .} (33)

with J+|j, j〉 = 0. J± are as usualJ1 ± iJ2.
Now if we choose the eigenstates of the Hamiltonian to be in the discrete series, thenj

takes the values−B + n wheren = 0, 1, 2, . . .. The ground states correspond toj = −B
and, therefore, we are in theD−

j series. We have infinite discrete degenerate ground states

| − B,−B〉, | − B,−B − 1〉, . . . . (34)

To find these states explicitly, we choose the ground state (4) to be the eigenstates ofJ0

with eigenvaluen. By some calculation, we find

ψn(z, z̄) = yB
(z − i)n−B

(z + i)n+B
. (35)

The quantum-group generators are the same as those in equation (16), by replacingz in
equation (16) with(z − i)/(z + i) andL2 with J0. Also, as our states are those in equation
(34), sonmax = −B and thereforeE+|nmax〉 = 0 which givesq (by choosingα = β = − 1

2)
as

q = exp

(
π i

B + 1

)
. (36)

By the same reasoning, theN -particle wavefunction isψm(zi, z̄i) in equation (10), where
we determineψ0(zi) such that theψm(zi, z̄i) will be the eigenfunction ofJ = ∑

i J
i
0 with

eigenvalueM. A lengthy calculation shows that

ψM
m (zi, z̄i) =

N∏
j<k

(zj − zk)
m

N∏
j=1

yBj
(zj − i)M/N−B−m(N−1)/2

(zj + i)M/N+B+m(N−1)/2
(37)

with m = 2k + 1. Finally the suitablesuq(2) generators are

E+ = −
N∏
j=1

(
zj − i

zj + i

)1/N

[J + α + β]q E− =
N∏
j=1

(
zj − i

zj + i

)−1/N

[J + α − β]q (38)

k = qJ+α.

5. Conclusion

As mentioned in the introduction, one way to describe the behaviour of the electron in the
FQHE is the concept of incompressible fluid, and its presence can be seen by checking the
existance of the quantum group symmetry of the Laughlin states. In this paper we showed
that in all cases there are such symmetries† and therefore we believe that this indicates
that the collective motion of the electrons in FQHE on the Poincaré half-plane are also
incompressible.

The last point is that it can be easily shown that the operator

L = g1(z)L1 + g2(z)L2 + g3(z)L3 + g4(z) (39)

† The generators of thesuq(2) algebra in section 2 commute with the Hamiltonian, and these generators in sections
3 and 4 commute withH at the level of the ground states (see equation (40)).
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with arbitrary holomorphic functionsgi(z)s, commutes with the Hamiltonian at the level of
the ground state

[H,L]ψ0(z, z̄) = 0. (40)

It can be shown that one can write theN -particle wavefunction to be the eigenstate ofL,
and with suitable choosing ofgi(z), these functions can be made normal. The importance
of this point will appear when we consider that the wavefunctions of the previous sections
are not normal.
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